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Abstract—In recent years, differential privacy has become a
well-accepted standard for the protection of sensitive information.
As our capacity to collect and analyze data improves, rigorous
privacy budgets and mechanisms to improve truthfulness become
valuable topics of research. In this survey, we will examine how
truthfulness and differential privacy are intrinsically connected
in the field of mechanism design for several widely-studied
game theory models—crowdsensing, auctions, and matching. This
paper will introduce mechanisms with various truthfulness and
privacy guarantees, evaluate the latest progress in theoretical
and empirical development for different game applications, and
present further avenues for research.

I. INTRODUCTION

In the past, mechanism design largely ignored privacy as an
incentive in a player’s utility functions. However, in reality,
people often factor the leakage of private information into
their decision-making. Recent research has investigated many
mechanisms and privacy definitions to rectify this missing
piece in traditional mechanism design. This paper reviews
truthful algorithms for private versions of three problems:
crowdsensing, auctions, and matching. We characterize each
problem and the development of truthful and private solutions
in the context of private mechanism design as a whole. Finally,
we discuss the current and future challenges and potential
opportunities for research in the field.
Contributions.

1) We perform a comprehensive survey of truthful mecha-
nisms in several privacy games. Unlike other surveys
of private mechanism design, we specifically address
guarantees of truthfulness in different private games.
Since other surveys cover significantly broader topics,
our survey is more comprehensive of truthful algorithms
in private mechanism design.

2) We provide analysis of the past and present field
of truthful and private mechanism design. Using this
analysis, we provide a future outlook for truthful and
private mechanisms, highlighting current challenges and
unexplored problems.

II. BACKGROUND

The theory of private algorithms has seen explosive growth
in recent years. In particular, Dwork’s [3] notion of differential
privacy has proven to be an invaluable tool for measuring the
privacy of users in a large number of applications:

Definition 1 ((ε, δ)-differential privacy). A randomized algo-
rithm M : D → H is said to be (ε, δ)-differentially private

((ε, δ)-DP) if, whenever D,D′ ∈ D are datasets differing on
the data of only one user, we have:

Pr[M(D) ∈ H] ≤ eε Pr[M(D′) ∈ H] + δ

for all H ⊆ H. If δ = 0, we say M is ε-DP.

The following variant is also useful:

Definition 2 (LDP). A randomized algorithm M : D → H is
said to be (ε, δ)-locally DP ((ε, δ)-LDP) if, whenever D,D′ ∈
D are any pair of datasets (considered to be the data of a single
user), we have:

Pr[M(D) ∈ H] ≤ eε Pr[M(D′) ∈ H] + δ

for all H ⊆ H. If δ = 0, we say M is ε-LDP.

The following game-theoretical definition is also important
to the results surveyed by this paper:

Definition 3 (η-dominant-strategy truthful). Let T be the
space of possible data from user input, and let t−i be a vector
of elements from T . Let ti, t

′
i ∈ T be user i’s actual and

reported data respectively. Let ui be user i’s utility function.
Then a mechanism M : Tn → O is said to be η-dominant-
strategy truthful (η-DST) if

ui(M(t−i, ti)) ≥ ui(M(t−i, t
′
i))− η

regardless of the t′i chosen. That is, a dishonest actor in an
η-DST mechanism cannot gain more than η utility by lying.

III. GAMES AND ASSOCIATED MECHANISMS

A. Crowdsensing

In the era of mobile devices, there is an incredible opportu-
nity for gathering sensory data. However, location information
associated with the sensory data is often sensitive. Thus,
researchers have developed private mechanisms for the release
of sensory and location information. Of course, guaranteeing
truthfulness in this game is of utmost importance. Truthful
reporting of location produces an optimal selection of sensor
data for social utility.

There are several problems that must be solved to effectively
implement private crowdsensing. First and foremost, there is
the issue of preserving user privacy. Second, there is the
problem of task assignment, where the server must match
users with sensing tasks. Task assignment is not necessary
in all crowdsensing paradigms. In passive paradigms, users
simply collect data by leaving a sensor, often a smartphone,



on and passively collecting data. However, spatial paradigms
require users to go to specific locations to record data, which
requires assigning users to tasks. Finally, there is the problem
of quality control. Different users may have varying qualities
of data (due to hardware differences, environmental noise, etc.)
and therefore should be aggregated together differently.

Singla and Krause [13] addressed privacy and truthful-
ness in a passive crowdsensing model. Unlike previous non-
private mechanisms, their protocol did not require users to
directly reveal private information unless they were selected
by the algorithm for data acquisition. Selected users would
be compensated for their information, making the leakage
of information worthwhile. Before selection, users only send
obfuscated, locally differentially private data to the server and
a bid for the ”price” of the data. The selection algorithm
greedily selects users based on the marginal gain per cost
given the users’ bids and the server’s value function for each
piece of sensor data. The selection algorithm also computes
a payment for each selected user which will always provide
an expected gain in utility for the user relative to their bid.
In addition, the paper shows that the algorithm is truthful,
meaning that users cannot gain expected utility by reporting a
bid that differs from their personal cost of leaking their private
information. Of course, the added obfuscation of the algorithm
incurs some loss of utility. The paper found that the loss of
utility was bounded empirically by 25%.

Wang et al. [15] designed a truthful and private algorithm for
the spatial crowdsensing paradigm. In the spatial crowdsensing
paradigm, there is a set of tasks, each of which are located
at different Cartesian coordinates. Users must travel to task
locations, which incurs some cost that increases proportionally
with distance from the task. In the described mechanism,
instead of obfuscating user locations, users report distances,
obfuscated with Laplace noise, to a subset of the tasks that
they are willing to perform. The benefit of this choice is that it
is more resistant to inference attacks. In addition, the algorithm
allows users to select a personal privacy budget, which will
affect the Laplace noise that is added, depending on their
valuation of privacy. Given these inputs, the paper describes
an algorithm which selects winners by assigning each user
to at most one task. This portion of the algorithm, which is
called the probabilistic winner selection mechanism (PWSM)
in the paper, occurs in two steps. First, the probability that
a given user is the closest to a given task is computed and
users are greedily assigned to all tasks where they are the
most likely to be closest. This creates the issue of users who
are assigned to multiple tasks, which is not allowed in this
model. To resolve this, the algorithm considers all possible
assignments of the user to a single task for which they are
the closest user and then assigns the second closest user for
the other tasks. This process is repeated iteratively to generate
all possible situations. Then, the algorithm compares the total
expected distance between every pair of situations and selects
the situation with the lowest total expected distance. The
second portion of the algorithm, called the Vickrey Payment
Determination Mechanism (VPDM), ascribes payment for the

winners determined by PWSM. The payment is determined
in two parts: a distance compensation and a privacy compen-
sation. The privacy compensation is directly computed from
the user’s selected privacy budget. The distance compensation
is computed to require that the user has some chance P of
receiving positive utility. The sum of these two values guar-
antees truthfulness and positive expected utility for selected
users.

Overall, both crowdsensing algorithms are similar in struc-
ture and guarantees. They differ in the crowdsensing paradigm
in which they function. The spatial crowdsensing paradigm is
a partial generalization of the passive crowdsensing paradigm
because it considers the addition of user distances from task
locations. The exact paradigms considered in the papers have
other nuanced differences such as budget constraints. However,
these differences are generally insignificant.

Another interesting method of recovering true values with-
out actually guaranteeing truthfulness is to use ideas from
quality control. Li et al. [8] designed an algorithm that uses
a weighted aggregation function based on inferred quality of
user data after Gaussian perturbation. Untruthful users will
slowly have their weight decreased, which will allow the server
to learn the true value for environmental data. We will not
discuss the details of weight inference as it does not guarantee
truth from users. However, it is worth mentioning as it is
another method of deriving true values in a crowdsensing
model given perturbed user data.

B. Auctions

The auction has been heavily studied in mechanism design,
and many auction formats have been designed for different
situations and priorities. This section discusses single-item,
multi-item, and digital goods auctions, focusing on well-
known truthful mechanisms for auctions and their intersections
with differential privacy. In mechanism design, truthful mech-
anisms are also referred to as incentive-compatible, meaning
that agents receive optimal payoff by bidding truthfully.

A similar problem to auctions is also discussed—the dis-
crete facility location problem. This problem determines a
selection of locations for one or more facilities such that the
selection minimizes agents’ distances to the nearest facility.

In a single-item auction, the true values that mechanism
designers want to know are the maximum amounts that bidders
are willing to pay for the auction item—their actual valuations
for the item. As an example, a common truthful mechanism
that ensures participants bid their actual valuation is the sealed-
bid second-price auction, also called the Vickrey auction [14].
In a sealed-bid first-price auction, each participant bids a value
in secret and the highest bidder pays the value they bid. In a
sealed-bid second-price auction, the highest bidder only has to
pay the second highest price. While the optimal strategy for
a first-price auction might be to underbid, the strategy for a
second-price auction is for bidders to bid their actual valuation,
in order to maximize their chances of winning the item while
avoiding paying more than they believe the item is worth.
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The sealed-price second-price auction is a variant of the
Vickrey-Clarke-Groves (VCG) auction, generalized by Clarke
[2] and Groves [5], which is a type of multi-item auction
utilizing the VCG truthful mechanism. The multi-item auction
is one in which multiple items must be distributed to multiple
people, where each person receives at most one item. The VCG
mechanism aligns the self-interest of the bidders with overall
social welfare by determining payments based on individual
social cost. Thus, the VCG mechanism is powerful in many
cases but fails when bidders have the ability to collude and
lie in conjunction with each other. This is where differential
privacy can play a role by restricting the damage of collusion
[9].

Definition 4 (collusion resistance). For any mechanism M
giving ε-differential privacy and any non-negative function g
of its range, for any D1 and D2 differing on at most t inputs,

E[g(M(D1))] ≤ eεt E[g(M(D2))]

In the case, g is the sum of all individual utilities. Collusion
between t individuals has a limited impact on collective utility.

McSherry and Talwar [9] developed the exponential mech-
anism, which can apply to several types of auctions. For
instance, in a single-item auction, the winner is chosen with
exponential probability. They also note that the exponential
mechanism can also be used in digital goods auctions, where
the auctioneer has an unlimited amount of an appealing good
and must set its price and choose recipients. Their results
show that this mechanism, and any mechanism that is ε-
differentially private, can result in (exp(ε) − 1)-dominant-
strategy truthfulness. Bidders have less incentive to lie because
their influence on the outcome is bounded. However, this is
not a guarantee of truthfulness, nor is collusion resistance
a guarantee that collusion cannot occur. Rather, the benefits
of lying and colluding are quantitatively bounded due to ε-
differential privacy.

Nissim et al. [10] expand on McSherry and Talwar’s re-
search by combining their exponential mechanism with a
commitment mechanism to achieve exact truthfulness. The
commitment mechanism randomly chooses a decision for the
auctioneer to make, and restricts the bidders into certain sub-
optimal reactions when they are untruthful. For example, in the
discrete facility problem, the agents could be forced to gain
utility from their reported location, not their actual location
[1]. They prove that, following this mechanism, telling the
truth always has a greater utility than misreporting for both
digital goods auctions and the facility location problem.

So far, the mechanisms by McSherry and Talwar [9] and
Nissim et al. [10] do not achieve both exact truthfulness and ε-
differential privacy. The next two mechanisms we will discuss
successfully achieve both properties but can only apply to
certain game models.

Xiao [16] describes a method to transform truthful mech-
anisms into truthful and ε-differentially private mechanisms.
He describes his method for the discrete facility problem on
a line, where each agent submits a location on the line and a

third-party chooses a facility location to minimize combined
distance to the facility. Each agent is trying to minimize their
own distance and there is a finite number of locations for
agents to choose from. The current truthful mechanism for
this problem is for the third-party to choose the left-most
median point; however, this is not ε-differentially private. Xiao
suggests creating a histogram counting the number of players
who choose each location and applying two-sided geometric
noise to each bin. From the perturbed histogram, choosing
the left-most median point would ensure both truthfulness and
privacy.

Huang and Kannan [6] prove that the exponential mecha-
nism can be both truthful and ε-differentially private when
the objective function is maximizing social welfare. Social
welfare is defined as the sum of every agent’s valuations. This
works in the same way that the VCG mechanism guarantees
truthfulness—by making payments represent individual social
cost. First, the outcome, the allocation decision, is chosen
with probability proportional to the exponential of social
welfare. Then the pricing for an agent is determined, in
oversimplified terms, by subtracting everyone else’s bids from
everyone else’s valuations so that the only way to maximize
personal utility is by maximizing social welfare and bidding
truthfully. The actual pricing scheme is more complex and
involves the formula for Shannon entropy. Unexpectedly, their
proof for exact truthfulness and ε-differential privacy from this
mechanism involves a comparison to Gibbs free energy.

In comparing these mechanisms, we will examine their
advantages and disadvantages for truthfulness and privacy
bounds, possible implementations, and generalization. The
four mechanisms can be divided into two categories. The first
category includes the exponential mechanism by McSherry
and Talwar [9], as well as the combination of the exponential
and commitment mechanisms by Nissim et al [10]. These are
more general algorithms that cannot guarantee both privacy
and truthfulness. The second category includes the mechanism
by Huang and Kannan [6] and the mechanism by Xiao [16].
Both achieve exact truthfulness and ε-differential privacy, but
are difficult to generalize.

McSherry and Talwar’s [9] exponential mechanism is
mostly included in this evaluation as a basis for comparison.
The exponential mechanism is a tool for differential privacy,
and since it is ε-differentially private for ε ≤ 1, it also happens
to be ε-approximately dominant strategy truthful. This claim
applies to all differentially private mechanisms. In response,
Nissim et al. [10] point to the fact that a truthful strategy
that is ε-approximately dominant means that misreporting is
another dominant strategy. In a digital goods auction, the
lower bound on revenue, which McSherry and Talwar find
to be OPT − 3 ln(e + ε2OPTn)/ε with a set of n bidders
where OPT is the optimal price, is inferior to a mechanism
with exact truthfulness. However, there are also limitations
to the mechanism by Nissim et al. Due to the commitment
mechanism, the choice of reaction by each agent no longer
satisfies ε-differential privacy since their reaction space is re-
stricted. Furthermore, their general mechanism cannot extend
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to large type sets, except in specific cases, and cannot apply to
cases where the objective function is sensitive, such as revenue
maximization in single-item auctions.

When the algorithm by Xiao [16] adopts the VCG mech-
anism as its truthful mechanism, the results from Xiao and
Huang and Kannan [6] become very similar. Both algorithms
are private, truthful, and computationally-efficient. In game
theory, another definition of efficiency is the algorithm’s dis-
tance from optimal global utility. Using the VCG mechanism,
Xiao’s algorithm is (ε, δ)-differentially private and has an
additive error on efficiency of O(q log(q/δ)/ε), where q is the
size of the type space. Huang and Kannan also show that their
algorithm maximizes utility, which in their case is the social
welfare function. The major limitation of Xiao’s method is
that it only works when the type space is small, and cannot be
generalized to all mechanism design problems. In comparison,
Huang and Kannan’s method can only be used for social
welfare maximization with payments and does not work well
for multi-item auctions—it can only approximately implement
the exponential mechanism and loses exact truthfulness and
privacy.

C. Matching

Matching is yet another studied application of game-
theoretic privacy. In a sense, these problems can be considered
variants of the auction problems above: instead of matching
participants with items that would grant them quantitative,
measurable utility, participants are matched with schools or
partners in a way that would grant them comparative utility.
One class of matching problems, stable matching, deals with
pair matching (usually one-to-one or one-to-many) that has the
property that there should not exist pairs who mutually prefer
each other over the partners that they are matched with. Again,
it should be noted that in contrast to the previous section, both
sides of the matching usually have comparative preferences,
rather than one side having numeric utility associated with
each option from the other side.

This class of problem was first discussed by Gale and
Shapley [4], who considered the context of stable one-to-one
bipartite preferential matching. Gale and Shapley [4] found
that in bipartite one-to-one preferential matching, (a) there is
always a stable matching and (b) such a matching can be
found by a deferred-acceptance algorithm that is dominant-
strategy-truthful for exactly one side. Roth [11] found that
it is actually impossible to create a mechanism for creating
stable matches in the one-to-one setting where the mechanism
is simultaneously truthful for both sides. Even worse, Roth
[12] found that in one-to-many matching it was impossible to
create an algorithm optimal for the matchable-with-many side
that incentivized truthful reporting for either side.

Kannan et al. [7] discuss the application of a slightly
modified one-to-many stable-matching setting: they permit
that participants on the side that may be matched with many
(henceforth schools) may have some small number of unfilled,
unstable spots to be occupied by participants from the side that
may only be matched with one (henceforth students). Kannan

et al. [7] then modify the definition of η-DST to be applicable
here (where A are the n students and U are the m schools,
with ⊙ representing the “not attending school” option):

Definition 5 (η-approximately-dominant-strategy truthful).
Let M be a randomized algorithm mapping vectors of student
and school ranked preferences ≻ to student-school matchings
µ ∈ (U ∪ {⊙})n. If we have for all students a ∈ A,
all preference vectors ≻, all [0, 1]-bounded utility functions
νa : (U ∪ {⊙}) → [0, 1] consistent with ≻a (that is,
νa(u1) ≥ νa(u2) whenever u1 ≻a u2), and any ≻′

a ̸=≻a, that

Eµ∼M(≻)[νa(µ(a))] ≥ Eµ∼M(≻′
a,≻−a)[νa(µ(a))]− η,

then we say that M is η-approximately dominant strategy
truthful (η-ADST).

It is easy to see that this is the comparative analogue
of the η-DST definition under expectation. In some sense,
it is stronger since it has to hold for all compatible utility
functions; however, it again only has to do so under ex-
pectation. Remarkably, Kannan et al. [7] find a connection
between ε-DP algorithms for selecting admissions thresholds
for students (Kannan et al. consider school preferences to
instead be the ranking induced by an admissions test where
each student knows their own numeric score, so thresholds
induce a matching where each student attends their favorite
school that they “made the cut” for) and selecting η-ADST
mechanisms for computing student-school assignments:

Theorem (Theorem 4.1 from [7]). Let M be any (ε, δ)-DP
mechanism which takes in preference (with scores as above)
vectors ≻ and outputs admissions thresholds from Rm

≥0. Let
F≻ : Rm

≥0 → (U ∪ {⊙})n be the function that computes the
induced matching where each student attends their favorite
school that they scored above the threshold for. Then the
mechanism F≻ ◦M is (ε+ δ)-ADST.

This is the remarkably strong analogue of McSherry and
Talwar’s [9] connection in the comparative setting. Indeed,
it achieves a linear trade-off in the privacy budget ε, rather
than an exponential one. Kannan et al. [7] use this to exhibit
several private, approximately truthful (in the students) stable
matching algorithms that favor schools.

IV. ANALYSIS AND CONCLUSION

Research of all the problems discussed in this paper exhibit
two different general trends. The first is the fact that research in
crowdsensing is trending towards generalization of problems
and their solutions. For instance, private and truthful crowd-
sensing has been generalized from the passive paradigm to
the spatial paradigm introducing an additional cost for users
traveling to task locations. The second is an opposite trend
in auction, resource allocation, and matching models towards
more complex mechanisms designed for stronger guarantees
in specific cases. The combination of the exponential and
VCG mechanisms resulted in stronger guarantees, but only
for the case of social welfare maximization. In general, these
problems use specificity to guarantee privacy, truthfulness, and
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efficiency. Then, once there are algorithms that have strong
guarantees, research generalizes the guarantees to broader
problems. We anticipate these trends to continue for all these
problems and for other privacy games.

Some areas that have not yet been researched include
generalization of current problems with more complex utility
functions, designing private and truthful algorithms that are
compatible with multiple problems, and focusing mechanism
design for specific game models. Another area we believe
to be heavily under-researched is the optimization of exist-
ing algorithms. Differentially private algorithms inherently
will come at the expense of utility when compared with
an algorithm where data is freely shared with a third-party
or server. Existing algorithms can be optimized to perform
better empirically while maintaining privacy and truthfulness
guarantees. Finally, even within these three problems, there
is potential for cross-pollination of ideas. For instance, the
core idea that privacy implies truthfulness by McSherry and
Talwar was first designed in relation to digital goods auctions,
but this weak bound also inspires a stronger result for one-
to-many matching problems. Future research should consider
repurposing ideas from one privacy game to another. As our
world becomes increasingly data-driven, these future solutions
to the challenges of data privacy and truthfulness become ever
more critical.
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